Home Física II - (nivel medio-sup) Resumo e exercícios sobre Ondas
Resumo e exercícios sobre Ondas PDF Imprimir E-mail
Qui, 05 de Agosto de 2010 02:09

ONDAS

www.nilsong.com.br

I) INTRODUÇÃO

1) Definição: pertubação que se propaga em um meio material ou no vácuo sem transporte de matéria, mas apenas energia.

2) Classificação:

A) Quanto a direção de vibração

Transversal - vibra perpendicularmente à direção de propagação. Exs: ondas na superfície da água, na corda e ondas eletromagnéticas.

Longitudinal - vibra na mesma direção de propagação. Exs: ondas sonoras e em uma mola

B) Quanto à natureza:

Mecânicas - as que depende de um meio material para se propagar. Exs: ondas sonoras, da água, na mola, corda,...

Eletromagnéticas - as que podem se propagar no vácuo. Exs: microondas, ondas de TV, luz visível, ondas de rádio,....

C) Quanto à direção de propagação

Unidimensionais - propagam - se em apenas uma direção. Exs: ondas na corda

Bidimensionais _ propagam-se em duas dimensões (superfície). Exs: ondas na superfície da água

Tridimensionais - propagam-se em três dimensões (espaço). Exs: ondas sonoras, ondas luminosas,...

3) Fenomênos Ondulatórios:

a) Reflexão -retorno da onda ao mesmo meio após insidir na superfície de separação de dois meios.

b) Refração - Passagem da onda para o 2º meio após insidir na superfície de separação de dois meios

c) Polarização - quando uma onda transversal vinha se propagando em várias direções, passa a se propagar em um só plano após passar por uma fenda.

d) Difração - possibilidade da onda contornar obstáculo.

e) Interferência - superposição de duas ondas que se propagam.

4) Principio de Huygens - cada ponto de uma frente de onda, no instante t, comporta-se como fontes secundárias de onda.

II) RESUMO SOBRE FÓRMULAS DE ONDAS  (PRINCIPAIS EQUAÇÕES)

--------------------------------------------------------------------------------------------

1) Equação fundamental de ondas


--------------------------------------------------------------------------------------------

2) Função de onda

.

---------------------------------------------------------------------------------------------

3) Ondas na corda


v = velocidade                   F = Tração na corda          μ = densidade linear

m = massa da corda             L = comprimento da corda

--------------------------------------------------------------------------------------------

4) Efeito Doppler

.

(eixo sempre orientado do obervador para a fonte)

--------------------------------------------------------------------------------------------

5) Ondas estacionárias ( um tipo particular de interferência) - onda resultante

da superposição de duas ondas com a mesma amplitude, frequência, período,

mesma direção e sentido de propagação oposto.

a) equação da onda estacionária:

.
Amplitude Função

A = 2Acos(2πx/λ)

y = 2Acos(2πx/λ).cos(ωt)

---------------------------------------------------------------------------------------------

b) onda estacionária na corda vibrante

.
Harmônico Velocidade Frequência
1º harmônico v = λ1.f1 f1 = 1.(v/2L)
2º harmônico v = λ2.f2 f2 = 2.(v/2L)
3º harmônico v = λ3.f3 f3 = 3.(v/2L)
4º harmônico v = λ4.f4 f4 = 4.(v/2L)
n-ésimo harmônico v = λn.fn fn = n.(v/2L)

--------------------------------------------------------------------------------------------

c) onda estacionária no tubo aberto

.
Harmônico Velocidade Frequência
1º harmônico v = λ1.f1 f1 = 1.(v/2L)
2º harmônico v = λ2.f2 f2 = 2.(v/2L)
3º harmônico v = λ3.f3 f3 = 3.(v/2L)
4º harmônico v = λ4.f4 f4 = 4.(v/2L)
5º harmônico v = λ5.f5 f5 = 5.(v/2L)
n-ésimo harmônico v = λn.fn fn = n.(v/2L)

------------------------------------------------------------------------------------------

d) onda estacionária no tubo fechado

.
Harmônico Velocidade Frequência
1º harmônico v = λ1.f1 f1 = 1.(v/4L)
3º harmônico v = λ3.f3 f3 = 3.(v/4L)
5º harmônico v = λ5.f5 f5 = 5.(v/4L)
7º harmônico v = λ7.f7 f7 = 7.(v/4L)
(2n+1) harmônico v = λ2n+1.f2n+1 f2n+1 = (2n + 1).(v/4L)

 

------------------------------------------------------------------------------------------

e) Representar cada harmônico no quadro abaixo:

.
Harmônicos Corda(figura) Tubo aberto(Figura) Tubo fechado(figura)
.
1º harmônico
.
.
2º harmônico
.
não
.
3º harmônico
.
.
4º harmônico
.
não

.

III) EXERCÍCIOS DE REVISÃO E COMPLEMENTO

 

1) Uma onda propaga-se com velocidade de 200 m/s e a sua representação no plano (xy), em metros, é mostrada na figura abaixo.

Determine:

a) a amplitude;

b) o comprimrnto de onda;

c) a frequência ;

d) o período.

 

1) A figura abaixo representa no plano (xy) com dimensões em metros duas ondas propagando-se independentemente em um meio no mesmo sentido. A linha tracejada é a onda A cuja velocidade é 200 m/s e a linha cheia a onda B com velocidade de 150m/s.


Determine:

a) a amplitude, o comprimento de onda, a frequência e o período da onda A;

(Resp: A = 2 m, λA = 20 m, fA = 10 Hz e TA = 0,10 s)

b) a amplitude, o comprimento de onda, a frequência e o período da onda B.

(Resp: A = 4 m, λB = 20 m, fB = 7,5 Hz e TB = 0,133.. s)

2) Uma onda é uma pertubação que se propaga em um meio material ou no vácuo. Sobre ondas é correto afirmar que:

a) (  )  ela transporta matéria e energia

b) (  ) transporta apenas matéria

c) ( x ) tranporta apenas energia

d) (  ) transporta matéria e não energia

 

3) São características  típicas de ondas:

a) (  ) peso e  reflexão

b) ( x ) interferência e difração

c) (  ) volume e pressão

d) (  ) densidade e temperatura

e) (  ) reflexão e refração

 

4)  Uma pedra cai na vertical sobre a superfície de um tanque cheio de água e forma uma onda circular na sua superfície como mostra a figura. A distância entre duas cristas consecutivas é 4 m. Em 5 segundos ela atinge a configuração mostrada no desenho abaixo.

 

Determine:

a) a velocidade de propagação da onda;

b) a frequência em Hz;

c) o período em segundos.

 

5) São exemplos de ondas transversais:

a) (  ) ondas sonoras e ondas de TV

b) (  ) ondas de rádio e ondas na mola

c) ( x ) ondas de TV e microondas

d) (  ) ondas sonoras e ultrasson

 

6) Considere três ondas A, B e C que se propagam em um meio com velocidade de 200 m/s, 240 m/s e 300 m/s respectivamente. Sobre elas são feitas as afirmações:

I) as ondas A, B e C apresentam o mesmo período;

II) elas apresentam comprimentos de onda iguais;

III) as ondas B e C apresentam a mesma frequência;

IV) a onda A apresenta frequência menor que as ondas B e C.

V) as frequências de A, B e C são respectivamente 10Hz, 12 Hz e 15 Hz.

 

Está(ão) correta(as):

a) I

b) II

c) I, II, III e V

d) II, IV e V

e) I, II e V

 

7) As ondas que podem propagar-se em qualquer meio são:

a) ( x ) ondas eletromagnéticas

b) (  ) ondas mecânicas

c) (  ) ondas transversais

d) (  ) ondas longitudinais

e) (  ) ondas unidimensionais

 

8) as ondas que tem a direção de vibração coinsidente com a direção de propagação são:

a) (  ) ondas eletromagnéticas

b) (  ) ondas mecânicas

c) (  ) ondas transversais

d) ( x ) ondas longitudinais

e) (  ) ondas unidimensionais

 

9)  as ondas que tem a direção de vibração perpendicular a direção de propagação são:

a) (  ) ondas eletromagnéticas

b) (  ) ondas mecânicas

c) ( x ) ondas transversais

d) (  ) ondas longitudinais

e) (  ) ondas unidimensionais

 

10) Cai longitudinalmente sobre a superfície da água uma haste de madeira de certa altura. Com o impacto na água forma uma frente de onda plana que se propaga com velocidade de 40 m/s. A distância entre a 1ª linha de onda e a frente de onda é 10 m. A figura abaixo mostra os raios de onda e a frente de onda seguida das linhas.

 

 

Calcule:

a) a frequência (resp: 4 Hz);

b) o período  (resp: 0,25 s);

c) a distância percorrida pela frente de onda em 2 minutos (resp: 4800 m).

 

11) Miicroondas, ondas na superfície da água e ondas sonoras são respectivamente:

a) (  ) eletromagnéticas, eletromagnéticas e mecânicas

b) ( x ) eletromagnéticas, mecânicas e mecânicas;

c) (  ) mecânicas, eletromagnéticas e mecânicas;

d) (  ) Mecânicas, mecânicas e eletromagnéticas

 

12) Ondas sonoras, de rádioem uma corda são:

a) (  ) transversais, longitudinais elongitudinais

b) (  ) transversais, transversais e longitudinais;

c) (  ) longitudinais, longitudinais e transversais;

d) ( x ) longitudinais, transversais e transversais

 

13)  Ondas na superfície da água, ondas de rádio e ondas na corda são respectivamente:

a) (  ) tridimensionais, bidimensionais e unidimensionais

b) (  ) unidimensionais, bidimensionais e tridimensionais

c) ( x )  bidimensionais, tridimensionais e unidimensionais

d) (  ) tridimensionais, tridimensionais e bidimensionais

 

14) a polarização só pode ocorrer em ondas:

a) (  ) longitudinais

b) (  )  eletromagnéticas

c) (  ) mecânicas

d) ( x ) transversais

 

15) Uma onda transversal do tipo quadrada propaga-se em um meio com velocidade de 50 m/s e a sua configuração é mostrado abaixo.

Determine:

a) a amplitude  (resp: 4 m);

b) o período  (resp: 0,2 s);

c) a frequência  (resp: 5 Hz)

 

16) Quando uma onda refrata em um 2º meio de propagação é mantido constante, em relação ao meio anterior, apenas:

a) ( x ) a frequência e período;

b) (  ) velocidade e amplitude

c) (  ) comprimento de onda e período

d) (  ) frequência e amplitude

e) (  ) freqUencia e velocidade

 

17) Classicamente são fenômenos próprios de ondas:

a) interferência, polarização, difração e efeito Doppler; ←

a) interferência, polarização, massa e efeito Doppler;

a) interfrência, polarização, difração e refração;

a) interferência, polarização, difração e densidade;

a) interferência, reflexão, difração e efeito Doppler;

18) Uma onda propaga-se com velocidade de 200 m/s conforme a figura. Qual o seu comprimento de onda, a amplitude a frequência e o período?

(Resposta: f = 50 Hz,   T = 0,02 s)

 

19) Em um meio a frquência de uma onda cujo comrimento é 20 m é 50 Hz. Qual a velocidade desta onda no referido meio?

Resposta: 1000 m/s

20) Quando uma onda  propaga-se com comprimento de onda de 2 m a sua velocidade é 150 m/s. Qual a frequência desta onda?

(Resposta: f = 75 Hz)

21) Uma onda cujo comprmento no meio A é 20 m,  propaga-se neste meio com velocidade de 50 m/s e ao passar para um meio B o seu comprimento de onda é 30m. Qual a velocidade desta onda no meio B?

(Resposta: 75 m/s)

 

22) Para uma onda que se propaga em um meio material a sua função de onda é Y = 40cos[2π(t/8 - x/10) + π/4)]. No S.I determine:

a) a frequência (resp: 1/8 Hz) b) o período  (resp: 8 s) c) a amplitude (resp: 40 m)

 

23) Uma onda que se propaga em um meio material a sua função de onda é Y = 20cos[π(t/4 - x/40) + π/6). Determine para o S.I:

a) a frequência (resp: 1/8 Hz) b) o período (resp: 8 s) c) a amplitude  (resp: 20 m)

 

24) A função de uma onda que se propaga em um meio é Y = 10cos[3π(t/18 - x/20) + π/3)], com as unidades no S.I. Determine:

a) a frequência (resp: 1/12 Hz) b) o período (resp: 12 s) c) a amplitude (resp: 10 m)

 

25) O ser humano consegue ouvir o som emitido em uma faixa de frequência denominada de som audível. Os valores desse intervalo do som audível é de:

a) (  ) 20 Hz a 15000 hz

b) (  ) 10 MHz a 30 MHz

c) 100 Hz a 50 MHz

d) 14 HZ a 80MHz

e) 20 Hz a 20000 Hz    x

 

26) Uma corda vibrante de comprimento 5 m forma onda estacionária com frequência do 3º harmônico igual a 60 Hz. Deternine:

a) a frequência do harmônico fundamental  (resp: 20 Hz);

b)  o comprimento de onda no harmônico fundamental  (resp:10 m)

c) a velocidade  (resp: 200 m/s)

 

27) Duas ondas idênticas propagam-se em sentidos contrários com velocidades de 256 m/s em uma corda, de 8 m de comprimento e de massa 2kg, tracionada e fixa nas extremidades, formando ondas estacionárias. Em certo instante atingem a configuração do desenho abaixo.

 

Determine:

a) comprimento da onda estacionária no 4º harmônico  (resp: 4 m);

b) o comprimento da onda estacionária no 1º harmônico  (resp: 16 m)

c) a frquência do harmônico fundamental   (resp: 16 Hz);

d) a frequêcia do 2º e 3º harmônicos   (resp: f2 = 32 Hz e f3 = 48 Hz);

e) a frequência do 4º harmônico  (resp: 64 Hz);

f) a amplitude das ondas que formam a onda estacionária (resp: 4 m);

g) a tração na corda (resp: 16384 N).

 

28) Um barco navega com velocidade de 40 m/s em relação ao solo e em sentido oposto as ondas de um lago que se propagam com velocidades de 10 m/s em relação as margens. Se o comprimento das ondas do lago é 5m, a frequência com que o barco oscila é:

a) 2 Hz

b) 6 Hz

c) 8 Hz

d) 10 Hz

e) n.d.r

 

29) Um carro, com uma sirene, aproxima-se de um observador em repouso e ao passar por ele, este observador percebe uma frequência sonora correspondente a metade da que percebia quando o carro estava aproximando-se. Considerando a velocidade do som igual a 330 m/s, a velocidade do carro é:

a) (  ) 30 m/s

b) (  ) 72 m/s

c) (  ) 100 m/s

d) (  ) 40 m/s

e) ( x ) 110 m/s

 

29.2) Uma onda propaga-se em uma corda horizontal de 800 cm de comprimento, presa nas duas extreminades, com velocidade de 60m/s. Quando o pulso chega na extremidade oposta, reflete e forma onda estacionária como mostra a figura. A massa da corda é 2 kg.

 

 

Com as dimensões do gráfico acima em metros no plano (xy), determine:

a) a frequência do harmônico fundamental;

b) o comprimento de onda do harmônico fundamenta;

c) a tração na corda;

d) os comprimentos de onda do 4º e 8º harmônicos;

e) as Frequência do 3º e 10º harmônicos.

 

30) A distância entre dois nós consecutivos de uma onda estacionária que se propaga em uma corda com velocidade de 100m/s é 50 m. Calcule a frequência e o período desta onda.

Resposta: f = 1 Hz, T = 1s)

31) Uma onda propa-se em um meio com velocidade de 20 m/s e atinge a configuração mostrada abaixo no plano (xy) com as mididas da região retangular em metros, como se vê:

Determine:

a) o comprimento de onda  (resp: 20 m);

a) a amplitude  (resp: 20 m);

c) a frequência e o período  (resp: 1 Hz, 1 s).

 

32) Em 12 segundos uma onda estacionária que se propaga em uma corda esticada e presas nas extremidades tem a distância correspondente a 3 ventres e 4 nós igual a 120 cm. Calcule o comprimento de onda, a velocidade, a frequência e o período.

(Respostas: λ = 80 m, v 10 cm/s, f = 1/8 Hz e t = 8 s)

 

32.2) Uma onda estacionária se propaga em uma corda de 16 m de comprimento quando ela sofre um impulso vertical em uma das extremidades e a sua representação é mostrada na figura abaixo após 0,16 segundos. A massa da referida corda é 3,2 kg.

As dimensões do gráfico acima no plano (xy) estão em metros. Determine:

a) a velocidade de propagação da onda;

b) a força que traciona a corda;

c) a frequência do 1º, 3º, 5º e 8º harmônicos;

d) o comprimento de onda do 1º, 3º, 5º e 8º harmônicos;

 

33) A distância entre uma frente de onda e a linha de onda mais próxima, de ondas circulares que se propagam na superfície da água com velocidade de 40m/s é 2m. Calcule a frequência e o período.

( Resp: f = 20 Hz e T = 0,05)

34) Quando uma corda de 5m e massa 2kg se encontra tracionada com uma força de 10N, ao sofrer um abalo em uma das extremidades uma  onda passa a se propagar por ela. Calcule a velocidade dessa onda.

(Resposta: 5 m/s)

 

34.1) Um objeto puntiforme cai verticalmente sobre a superfície da água parada de uma represa, de dimensões internas 800 m x 800 m, e forma uma onda circular.  Em 80 segundos é atingido a configuração mostrada no desenho. A distância entre duas linhas de onda consecutivas é 10 cm.

 

Determine:

a) a frequência da onda;

b) o seu período;

c) a amplitude.

 

35) Sabendo que a amplitude das ondas que formam a onda estacionária é 20 cm, calcule a amplitude máxima da onda estacionária resultante desta superposição.

(Resposta: 40 m)

36) Uma corda de 2 kg e 200 cm de comprimento que se encontra tracionada por uma força de 200N, sofre uma pertubação vertical em uma de suas extremidades. A velocidade do pulso que passaria a propagar-se na corda é, em m/s:

a) 5 m/s            

b) 10 m/s x

c) 15 m/s

d) 20 m/s

e) 25 m/s

 

37) Propaga-se em um meio com velocidade de 60 m/s uma onda triangular como mostra a figura abaixo:

Determine:

a) o comprimento de onda  (resp: 20 m);

b) a amplitude  (resp: 10 m);

c) a frequência  (resp: 3 Hz);

d) o período  (resp: 1/3 s)

 

38) A queda perpendicular de um objeto vindo de grande altura na superfície da água do mar  forma uma onda circular composta de raios de onda e linhas de onda, como mostra a figura, que se propaga com velocidade de 25 m/s. Cada linha de onda está uniformemente separadas uma da outra e a frente de onda está 0,2 dam da primeira linha de onda.



Calcule o período em segundos e a frequência em Hetz que esta onda bidimensional (plana) se propaga na superfície da água.

(Resp: f = 12,5 Hz e T = 0,008 s)

39) No problema anterior no instante que a frente de onda está a uma distância de 2000 m da praia, um barco está adiantado 400 m em relação a mesma. O barco tentando fugir da onda, corre na direção e sentido da praia com certa velocidade constante. A velocidade do barco para que ele e a onda cheguem juntos na praia deverá ser:

a) 40 m/s

b) 15 m/s

c) 30 m/s

d) 18 m/s

e) 20 m/s    x


QUESTÕES DE NÍVEIS MAIS AVANÇADOS EM GERAL

40) Um navio aproxima-se com velocidade constante  de uma  costa que é formada por uma montanha plana vertical. Um aparelho de som de um tripulante do navio emite som com uma frequêcia de 400 Hz que reflete na costa e na volta ele percebe uma frequência de 600 Hz. A velocidade do barco é:

a) 113,3 m/s

b) 170 m/s

c) 68 m/s

d) 74,8 m/s

e)  50 m/s

 

41) Em uma experiência feita com um tubo, chamado tubo de Kundt, a velocidade de propagação do som em um gás  neste tubo a 57,33 ºC é 330 m/s. A velocidade do som no gás a 0ºC é:

a) 300 m/s

b) 250 m/s

c) 360 m/s

d) 200 m/s

e) 400 m/s

 

42) Uma pessoa encontra-se em repouso na margem de uma estrada quando se aproxima um carro com velocidade constante emitindo um som com frequência de 340 Hz.  Esta pesooa percebe uma frequência de 360 Hz. Determine:

a) a velocidade do carro;

b) a frequência percebida pela pessoa quando o carro passar por ele.

 

43) Considerando a equação de onda estacionária  y = 2Acos(2πx/λ).cos(ωt) onde λ é o comprimento de onda, a posição x de dois nós consecutivos poderia ser dado por:

a) λ / 3 e λ / 5

b)  λ / 4 e 3λ / 4

c) 5 λ / 3 e 7λ / 3

d)  2λ / 3 e 2λ / 5

e)  6λ / 3 e 7λ / 3

Resposta: item b

 

44) Uma onda estacionária propaga-se segundo a função y = 2Acos(2πx/λ).cos(2πt/T) onde λ é o comprimento de onda. A posição x de dois ventres consecutivos seria:

a) 3λ / 3 e 5λ / 5

b)  6λ / 5λ / 5 e 7λ / 5

c)  λ / 2 e  λ

d)  2λ / 3 e 2λ

e)  11λ / 3 e 13λ / 3

resposta: item c

45) Uma fonte emite luz de compriimento de onda λ e ao passar por duas fendas de um anteparo separadas uma da outra por uma distância d, atinge uma tela localizada de uma distância D deste anteparo. Sendo r1 e r2 as distâncias das fendas a um dos pontos da tela onde as ondas provenientes das fendas superpõem-se e r2 - r1 = yd/D, as posições y de duas franjas (uma brilhantre e outra escura)  serão:

a) λ.D/d e 1,5λ.D/d

b) λ.d/D e 3,5λd/D2

c) 2λd/D3 e 5λd/D3

d) 2,5λd2/√D e 3,5λd2/√D

e) λD/d2 e 2λD/d2

 

46) Em um tubo sonora com uma extremidade fechada e outra aberta é injetado ar que apresenta 3 nós a 0ºC no interior dele. Cada nó está distante do outro de 50 cm.  Determine:

a) o comprimento do tubo;

b) o comprimento de onda do som emitido pelo tubo no harmônico fundamental;

c) as frequências do 1º, 5º e 7º harmônicos.

OBS: Considere esquematicamente a onda no interior do tubo comportando-se como transversal para facilitar o entendimento, mesmo ela sendo longitudinal!

 

47) Refaça a questão anterior supondo que o tubo é aberto nas duas extremidades e mantendo a temperatura do ar e o mesmo comprimendo de onda.

 

48) Uma corda de 2 metros de comprimento e 4 kg de massa permanece presa pelas extremidades e esticada na horizontal por uma força de 128 N. Quando uma destas extremidades sofre uma agitação vertical há a propagação de uma onda que ao chegar no ponto fixo oposto reflete formando ondas estacionárias na corda.

As frequências do 1º, 2º e 5º harmônicos são respectivamente:

a) 4Hz, 8 Hz e 20 Hz

b)  2Hz, 4 Hz e 10 Hz

c)  7Hz, 14 Hz e 35 Hz

d)  6Hz, 12 Hz e 30 Hz

 

49) Admitindo que a frequência do som fundamental da corda de 40 cm de um violino é 400 Hz, determine:

a) o comprimento de onda fundamental     b) o comprimento de onda do 3º harmônico    c) a velocidade de propagação.

 

50) Uma corda de 8 m de comprimento e de 2 kg é mantida esticada na horizontal por uma força de intensidade 100 N. Dois pulsos partem das extremidades opostas um de encontro ao outro, sendo que o pulso da esquerda parte 0,1 segundos antes do pulso da extremidade direita. Detemine:

a) a posição que os pulsos se encontram;

b) o instante que eles se encontram, contados em relação ao que parte primeiro;

c) a velocidade de propagãção dos pulsos.

 

52) As frequências de dois harmônicos consecutivos de uma onda estacionária na corda são 1000 Hz e 1050 Hz. O comprimento de onda do harmônico fundamental é 25 m. Determine:

a) o comprimento da corda;

b) a velocidade de propagação da onda estacioária na corda;

c) as frequências do segundo, terceiro  e sétimo harmônicos

 

52) Em um tubo de 1,0 m de comprimento contendo água esta poderá ocupar vários níveis. Em certas posições que a água atinge ele vibrará com um determinado harmônico, quando uma fonte sonora próximo a extremidade aberta vibra com uma frequência de 680 Hz. Considerando a velocidade do som no interior do tubo igual a 340 m/s, o número de posições onde ocorrerá ressonância é:

a) 2

b) 4

c) 7

d) 11

e) 15

 

53) Um ouvinte no ponto P escuta dois sons emitidos pelas fontes F1 e F2 em fase e situadas a 100 m e 80 m  deste ouvinte. A velocidade do som é 340 m/s. Uma das possíveis frequências que ele percebe para que o som emitidos pelas fontes seja, em P,  mínimo e máximo respectivamente são:

a) 59,5 Hz e 51 Hz

b) 51 e 17 Hz

c) 70,2 Hz e 102,5 HZ

d) 120 Hz e 360 Hz

e) 34,7 Hz e 21 ,4Hz

 

54) Quando um avião passa a 100 m de altura o nível sonoro no chão é 150 dB. As autoridades do local determinaram que este nível sonoro no máximo deveria ser de 140 dB. Considere que o som se propaga igualmente para todas as direções. A partir daí a altura mínima que o avião deve sobrevoar esta região para atender as recomendações ou as ordens será:

a) 150 m

b) 280 m

c) 316 m

d) 530 m

e) 870 m

 

55) Um carro que emite uma frequência de 400 Hz parte de um muro com velocidade constante de 40 m/s na mesma direção e sentido de uma pessoa que se encontra na margem de uma estrada em repouso. Sendo a velocidade do som igual a 340 m/s, são feitas algumas afirmações sobre este fato:

I) a pessoa percebe uma frequência de aproximadamente 453 Hz;

II) A pessoa não escuta a frequência emitida pelo carro;

III) a frequência percebida pela pessoa é menor que 400 Hz, mas não inferior a 20 Hz;

IV) a frequência dos batimentos verificada entre as frequência do carro e do som refletido pelo muro, no ponto onde está a pessoa, é aproximadamente 95 Hz.

Está(ão) correta(s):

a) I

b) II

c) I e II

d) I e III

e) I e IV

 

56) Uma onda estacionária na corda fixa nas duas extremidades, de função horária y = 0,8 sen(3πx)sen(60πt) vibra no segundo harmônico quando submetida a uma força de 400N. Dertermine:

a) o comprimento da corda  b) a velocidade  c) a frequência desse harmônico  d) a massa da corda

 

57) Dois caças bombardeiros (aviões de guerra) partem ao mesmo tempo um de encontro ao outro. O caça M parte da encosta de uma montanha e o caça X de um porta-avião. As suas velocidades são VM = 860 km/h e VX = 600 km/h. O caça X emite um sinal sonoro de 200 Hz. A velocidade do som no ar é 1224 km/h. Determine:

a) a frequência recebida por M;

b) a frequência recebida por um observador parado na montanha;

c) a frequência recebida de volta por X quando o som refletir em M;

d) a frequência recebida de volta por X quando o som refletir na montanha;

e) a frequência recebida de volta por X quando o som refletir em M e considerando que um vento de 20 m/s sopra de M para X;

f) a frequência recebida por por M quando o som refletir duas vezes em X;

g) a frequência recebida por por X quando o som refletir duas vezes em M;

h) a frequência recebida de volta por X quando o som refletir em M e considerando que um vento de 20 m/s sopra de X para M.

NOTA DO AUTOR: O material desde site é proíbido para toda atividade direta ou indiretamente comercial bem como para qualquer uso por parte de profissionais. Para o aluno(a) estudar não está proíbido! Para denunciar qualquer desvio desta finalidade comunique para Este endereço de e-mail está protegido contra spambots. Você deve habilitar o JavaScript para visualizá-lo. ou (83)99025760 ou ainda (83)91219527.

Nilson